Influence of laser wavelength and pulse duration on gas bubble formation in blood filled glass capillaries.
نویسندگان
چکیده
BACKGROUND AND OBJECTIVES Hypervascular skin lesions (HVSL) are treated with medical lasers characterized by a variety of parameters such as wavelength lambda, pulse duration t(p), and radiant exposure E that can be adjusted for different pathology and blood vessel size. Treatment parameters have been optimized assuming constant optical properties of blood during laser photocoagulation. However, recent studies suggest that this assumption may not always be true. Our objective was to quantify thermally induced changes in blood that occur during irradiation using standard laser parameters. STUDY DESIGN/MATERIALS AND METHODS Glass capillary tubes (diameter D = 100, 200, and 337 microm) filled with fresh or hemolyzed rabbit blood were irradiated once at lambda = 585, 595, or 600 nm, t(p) = 1.5 milliseconds; and also at lambda = 585 nm, t(p) = 0.45 milliseconds. E was increased until blood ablation caused formation of permanent gas bubbles. In a corroborative study, human blood was heated at 50 degrees C and absorbance spectra were measured as a function of time. RESULTS Threshold radiant exposure, E(thresh), for gas bubble formation was found not to depend on lambda, which might be surprising in view of the 10-fold lower absorption coefficient at 600 nm as compared to 585 nm. The spectroscopic study revealed heat-induced changes in blood constituent composition of hemoglobins (Hb) from initially 100% oxyhemoglobin (HbO2) to deoxyhemoglobin (HHb) and, ultimately, methemoglobin (metHb) as the major constituent. Model calculations of E(thresh)(lambda,D) based on changing constituent blood composition during heating with milliseconds lasers were found to correlate with experimental results. CONCLUSIONS For laser treatment of HVSL it appears that lambda is of secondary importance and that the choice of t(p) is a more important factor.
منابع مشابه
A method for detecting bubbles in two-phase gas-liquid flow
Detecting bubble in two-phase flow has been a basic issue in two-phase flow systems. A new method for measuring the frequency of bubble formation is presented in this paper. For this purpose, an electronic device was designed and constructed which works based on a change in intensity of laser beam. For this purpose, continues light beam is embedded just above the needle, which is received by a ...
متن کاملEffects of Laser Physical Parameters on Lesion Size in Retinal Photocoagulation Surgery: Clinical OCT and Experimental Study
Introduction: The aim of the present study was to determine burn intensity in retinal laser photocoagulation based on laser parameters; wavelength, power, beam size and pulse duration, using Optical Coherence Tomography (OCT), fundus camera, physical eye model and computer simulation in a clinical study.Materials and Methods: Participants were 10 adult patients between 50-80 years with prolifer...
متن کاملDESIGN CONSIDERATIONS FOR TABLE-TOP FELs∗
Refinements in laser technology (few-cycle pulse generation, chirped pulse amplification) combined with supercomputer-based plasma simulations have brought the discipline of relativistic laser-matter interaction to a new level of predictability. This was recently demonstrated by the generation of brilliant electron bunches with energies on the 0.1-1-GeV-scale. Our plan is to utilize such lasera...
متن کاملLuminescence from Spherically and Aspherically Collapsing Laser Induced Bubbles
Light emission from bubbles in liquids has received increased attention with the advent of single bubble levitation in sound fields [1]. In this Letter we present investigations of the light emission from single collapsing cavitation bubbles: single cavitation bubble luminescence (SCBL). Our method makes use of focused laser light to produce largely empty bubbles in a liquid, a method used earl...
متن کاملA method for bubble volume measurement under constant flow conditions in gas–liquid two-phase flow
Measuring the volume of a bubble, especially at its detachment, is a basic subject in gas-liquid two-phase flow research. A new indirect method for this measurement under constant flow conditions is presented. An electronic device is designed and constructed based on laser beam intensity. This device calculates the frequency of the bubble formation by measuring the total time of the formation p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lasers in surgery and medicine
دوره 36 4 شماره
صفحات -
تاریخ انتشار 2005